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Abstract—We consider a cognitive radio (CR) network con-
sisting of a secondary user transmitter (SU-Tx) equipped with
multiple antennas and a secondary user receiver (SU-Rx) that
share spectrum with multiple primary user transmitter (PU-
Tx) and receiver (PU-Rx) pairs. We assume that the CR has
a loose cooperation with the primary network and therefore,
only partial channel state information of each of the PU-Tx to
PU-Rx and SU-Tx to each PU-Rx links is available. Furthermore,
we assume that the SU-Tx to SU-Rx link CSI is imperfect, with
the channel error modelled as additive Gaussian noise. Under
these assumptions, we propose a new statistically robust CR
beamformer where the total SU-Tx transmit power is minimised
subject to PU-Rx and SU-Rx outage probability constraints. We
present expressions for PU-Rx and SU-Rx outage probabilities
and formulate the robust beamformer optimisation problem as
a convex semidefinite program (SDP). SU-Tx transmit power,
PU-Rx signal-to-interference-and-noise ratio (SINR) and SU-Rx
signal-to-noise (SNR) cumulative distribution functions (CDFs)
are obtained through solution of our optimisation problem.

I. INTRODUCTION

A number of papers have appeared on various aspects of
cognitive radio (CR) systems, including capacity limit depen-
dence on channel state information (CSI) (see, eg., [1, 2]). In
an underlay CR system the secondary users (SUs) protect the
primary user (PU) by regulating their transmissions to main-
tain the PU receiver interference below a defined threshold
level. The limits on this received interference level at the PU
receiver can be imposed by an average/peak constraint, or a
minimum signal-to-interference-and-noise ratio (SINR). The
advantage of using an SINR-based PU protection mechanism,
as opposed to PU interference temperature based protection,
is that it removes the constant interference threshold, thus
benefiting the SUs when the PU link is strong.

Beamforming has been shown to significantly improve
performance in conventional wireless systems [3–6]. Recently,
there has been significant progress in the field of beam-
forming using convex optimisation techniques. In [7, 8], the
beamforming problem has been recast into tractable convex
optimisation problems and efficiently solved using interior
point methods [9]. In [3–8], the beamformers were designed
under the assumption of full CSI. In practise, full CSI is
seldom available. To this extent, several works have appeared
on the design of robust cooperative beamformers based on
worst case performance optimisation that assume deterministic
upper bounds on the norm of the channel errors [10–13].
Unfortunately, solutions obtained through worst case approach
can be overly conservative because the probability of worst
case errors may be extremely low [14]. Since the wireless
channel varies randomly, it makes more sense to consider

a probabilistic model for the design of robust beamformers.
Outage probability based statistically robust beamformers have
been proposed in [14, 15].

Due to its advantages, beamforming has attracted much
interest in CR research [16–20]. A typical spectrum sharing
cognitive network consists of a SU transmitter (SU-Tx) and a
SU receiver (SU-Rx) that coexist with a number of primary
transmitters and receivers. One of the challenges of spectrum
sharing is guaranteeing quality of service (QoS) to the PU.
Generally the goals of the CR are not compatible with the
goals of the PU. For instance, increasing SU power to increase
SU capacity will tend to increase interference to the PU.
Beamforming is seen as a way to alleviate some of these
issues, since the SU can direct its power away from the PU
receivers. Design of CR beamformers under the assumption
of full channel state information (CSI) has been the subject
of investigation in [16, 17]. In [18, 19], the design of robust
worst case CR beamformers under the assumption of partial
CSI have been studied. Most recently, in [20], the design of
a statistically robust CR beamformer under the assumption of
imperfect CSI for a CR network with close cooperation with
the primary network was addressed.

In this paper, we consider the scenario where there are
multiple PU transmitter and receiver pairs coexisting with a
SU-Tx and SU-Rx pair. We assume that the CR network has
a loose cooperation with the primary network and, therefore,
only mean channel powers of each of the PU transmitter (PU-
Tx) to PU receiver (PU-Rx) and the SU-Tx to each PU-Rx
links are available. Furthermore, we assume that the SU-Tx to
SU-Rx link CSI is imperfect, with the channel error modelled
as additive Gaussian noise. We propose a new statistically
robust CR beamformer where the total SU-Tx transmit power
is minimised subject to PU-Rx and SU-Rx outage probability
constraints. We present expressions for PU-Rx and SU-Rx
outage probabilities and formulate the robust beamformer
optimisation problem as a convex semidefinite program (SDP).
SU-Tx transmit power, PU-Rx SINR and SU-Rx signal-to-
noise (SNR) cumulative distribution functions (CDFs) are
obtained through solution of our optimisation problem.

Notation: Upper (lower) bold face letters are used for ma-
trices (vectors); (·)∗, (·)T , (·)H , E{·} and ‖·‖ denote complex
conjugate, transpose, Hermitian transpose, expectation and
Euclidean norm for vectors or Frobenius norm for matrices,
respectively. | · |2 denotes the magnitude squared operator
for scalars and elementwise magnitude squared for vectors.
tr (·), CR×1, CR×R, <{·} and ={·} denote the matrix trace
operator, space of R × 1 vectors with complex entries, space
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of R × R matrices with complex entries, the real part and
the imaginary part. The jth element of vector h is denoted
by h(j). W � 0 denotes that W is positive semidefinite.
The notation x ∼ NC(m,Σ) states that vector x contains
entries of complex Gaussian random variables, with mean m
and covariance Σ.

II. SYSTEM MODEL

As shown in Fig. 1, we consider a cognitive radio system
which consists of a secondary transmitter (SU-Tx), a sec-
ondary receiver (SU-Rx) and K primary transmitter (PU-Tx)
and receiver (PU-Rx) pairs. The SU-Tx has M antennas while
there is only one antenna at the SU-Rx and each of the PU-
Txs and PU-Rxs. We assume that the SU-Tx is located in
close proximity of the primary system while the SU-Rx is
located at a large distance away from the primary transmitters.
Since the PU and SU systems use the same frequency band,
the PU-Rxs experience interference from the SU-Tx. In our
analysis, we assume that the PU-Tx transmit powers are
sufficiently attenuated by distance to be ignored at the SU-
Rx. Furthermore, we assume that the PU system employs a
time division multiple access (TDMA) scheme, however, due
to the loose cooperation between the PU and SU systems,
no information regarding PU time slots and synchronisation
is available to the SU system. Hence, in our analysis the SU
assumes that all PU-Txs are active simultaneously.

Independent, point-to-point, flat Rayleigh fading channels
are assumed for all links in the network. The channel between
the ith PU-Tx and the ith PU-Rx and the SU-Tx and ith PU-
Rx are denoted by the scalar ci ∈ C and the vector fi ∈ CM×1,
respectively, for i = 1 . . .K. h ∈ CM×1 denotes the channel
between the SU-Tx and the SU-Rx. The instantaneous channel
powers of these links are represented by g

(i)
c = |ci|2, g(j)

fi
=

|f (j)
i |2 and g

(j)
h = |h(j)|2 for j = 1 . . .M . Furthermore, we

assume that the channel powers for all links are independent
and identically distributed (i.i.d.) and are governed by their

corresponding parameters E{g(i)
c } = Ω

(i)
c , E{g(j)

fi
} = Ω

(j)
fi

and E{g(j)
h } = Ω

(j)
h .

The signal at the SU-Rx is given by

y = hHwss + ns, (1)

and that at the ith PU-Rx by

zi =
√
Pps

(i)
p ci + fHi wss + n(i)

p , (2)

where ss is information symbol transmitted by the SU-Tx,
w ∈ CM×1 is the beamforming vector at the SU-Tx and ns

is additive white Gaussian noise (AWGN) with variance σ2
s

at the SU-Rx, Pp is the PU-Tx transmit power, s(i)
p is the

information symbol transmitted by the ith PU-Tx and n(i)
p is

the AWGN with variance σ2
p, at the ith PU-Rx. We assume

E{|ss|2} = E{|s(i)
p |2} = 1.

The power transmitted by the SU-Tx is given by

PT = ‖w‖2. (3)

Using (1) and (2) and assuming that ss and
√
Pps

(i)
p , are

uncorrelated, the SNR at the SU-Rx can be expressed as

γs =
|hHw|2

σ2
s

, (4)

and the SINR at the ith PU-Rx is given by

γ(i)
p =

Pp|ci|2

|fHi w|2 + σ2
p

. (5)

In a cognitive radio system the secondary users are allowed
to operate as long as they can guarantee a certain level of
quality of service to the primary user. Hence, in our analysis
we impose an SINR constraint, γ(i)

T , at the ith PU-Rx, i.e.,
γ

(i)
p ≥ γ(i)

T .

III. BEAMFORMER OPTIMISATION UNDER FULL CSI

In this section, we aim to find the optimum beamforming
weight vector, w, such that the total SU-Tx transmit power,
PT , is minimised while guaranteeing minimum QoS to the
SU-Rx and each of the PU-Rxs.

In our analysis, we assume that we are unable to control
the PU’s transmit power and that all of the PUs transmit at
a constant power of Pp. In this section, we formulate the
beamforming problem under the assumption that full CSI for
all links is available. This is the basis for the development of
the statistically robust beamformer in Section IV.

The total SU-Tx transmit power minimisation problem can
be mathematically represented as

min
w

‖w‖ (6a)

s.t.
Pp|ci|2

|fHi w|2 + σ2
p

≥ γ(i)
T , i = 1 . . .K (6b)

|hHw|2

σ2
s

≥ γs,min (6c)

Constraint (6c) is satisfied with equality at the optimum.
Otherwise, the optimum w could be scaled down to satisfy



the constraint with equality, hence decreasing the objective
function and contradicting optimality.

Problem (6) is a non-convex optimisation problem, but it can
be reformulated into a convex optimisation problem. Following
[7], we observe that neither the objective function nor the
constraints change if the beamforming vector undergoes a
phase rotation. Thus, hHw can be chosen to be real without
loss of generality. The transmit power minimisation problem
can therefore be restated as the following second order cone
program (SOCP)

min
w

‖w‖ (7a)

s.t.
√
Pp|ci|2 ≥

√
γ

(i)
T

∥∥∥∥fHi w
σp

∥∥∥∥ , i = 1 . . .K (7b)

hHw ≥ σs
√
γs,min (7c)

<{hHw} ≥ 0 (7d)
={hHw} = 0 (7e)

Problem (7) is in a convex form and standard interior point
methods can be used to solve it efficiently.

IV. ROBUST BEAMFORMER OPTIMISATION UNDER
PARTIAL AND IMPERFECT CSI

In practice, full CSI for all links is seldom available and
the assumption of full or perfect CSI may be overly idealistic.
We consider a CR network with a loose cooperation with the
primary network. We assume that only mean channel powers
of each of the PU-Tx to PU-Rx and the SU-Tx to each PU-
Rx links are available, i.e., only Ω

(i)
c ∀i and Ω

(j)
fi
∀i, j for the

aforementioned links are available. Furthermore, we assume
that the CSI of the SU-Tx to SU-Rx link is imperfect. The
imperfection may be due to estimation errors or other factors
such as quantisation. In our analysis, we model the CSI errors
as additive complex Gaussian noise. Hence

h = h̃ + e, (8)

where h̃ is the imperfect SU-Tx to SU-Rx link CSI estimate
known at the SU-Tx and e is the zero mean error vector with
i.i.d. complex Gaussian entries and the diagonal covariance
matrix Σe, i.e., e ∼ NC(0,Σe).

In our formulation we consider the SU and PU outage
probability as the QoS parameter. In the system under con-
sideration, outage at the ith PU occurs when its SINR, γ(i)

p ,
falls below the threshold γ

(i)
T . Similarly, SU outage occurs

when the SU SNR, γs, falls below the SU SNR threshold,
γs,min. The ith PU outage probability is expressed as

Po
(i) = Pr

{
γ(i)

p ≤ γ
(i)
T

}
(9)

= Pr
{
Pp|ci|2 − γ(i)

T wHfif
H
i w ≤ γ(i)

T σ2
p

}
,

where we have used the relation |fHi w|2 = wHfif
H
i w.

Likewise, the SU outage probability is expressed as

Po
SU = Pr

{
|hHw|2 ≤ γs,minσ

2
s

}
. (10)

The probabilistic measures are performed over ci and fi
statistics in (9) and over CSI error statistics in (10).

Hence, given maximum allowable PU and SU outage prob-
abilities, α(i) and β, constraints (7b) and (7c) are replaced
with Po

(i) ≤ α(i) and Po
SU ≤ β, respectively.

To proceed, we observe that, in (9), we are dealing with
a probability density function (PDF) that is given by the
difference of two random variables, namely, Pp|ci|2 and
γ

(i)
T wHfif

H
i w. It is easily shown that Pp|ci|2 has an expo-

nential distribution with a mean of PpΩ
(i)
c . The probability

distribution of γ(i)
T wHfif

H
i w can be found using the following

lemma.

Lemma 1. If x ∈ CR×1 is distributed as x ∼ NC(0,Σ), then
for any deterministic positive semidefinite Hermitian matrix
A ∈ CR×R, the PDF of the random variable ψ = xHAx,
ψ ≥ 0, is given by

f(ψ) =

[
N∏
i=1

λi

]
N∑
j=1

exp (−λjψ)∏N
k=1,k 6=j (λk − λj)

, (11)

where λi = 1/Λi, and Λi, i = 1 . . . N ≤ R are the non-zero
eigenvalues of ΣA. Note that this is precisely the distribution
of the sum of N exponentially distributed independent random
variables, each with a mean of Λi.

Proof: Note that xHAx is commonly known as a
quadratic form in normal random variables [21]. We first de-
fine y = Σ−

1
2 x. It is easily verified that y ∼ NC(0, I). Using

an orthogonal R×R matrix P that diagonalises Σ
1
2 AΣ

1
2 or

equivalently ΣA, i.e., PHΣAP = diag(Λ1,Λ2, . . . ,ΛR) and
Λ1,Λ2, . . . ,ΛR are the eigenvalues of ΣA. ψ can then be
expressed as

ψ = yHΣ
1
2 AΣ

1
2 y = (PHy)HPHΣ

1
2 AΣ

1
2 P(PHy)

= tr (diag(Λ1,Λ2, . . . ,ΛR)PHyyHP)

=

N∑
i=1

Λi|(PHy)i|2, (12)

where N ≤ R is the number of non-zero eigenvalues of
ΣA and (PHy)i is the ith element of the vector PHy.
Since P is an orthogonal matrix, it is easily shown that
PHy ∼ NC(0, I), and therefore, |(PHy)i|2 is an exponen-
tially distributed random variable with a mean of Λi. Hence,
(12) is a sum of N exponentially distributed independent
random variables, each with a mean of Λi, whose PDF is
given by (11). The derivation of the PDF of the sum of N
exponentially distributed independent random variables has
appeared in many texts, we refer the interested reader to [22]
and references therein.

We note that γ(i)
T wHfif

H
i w = γ

(i)
T fHi Wfi, where W =

wwH . Using Lemma 1 and exploiting the fact that W is a
rank-one matrix, we have that γ(i)

T wHfif
H
i w is exponentially

distributed with a mean of γ(i)
T tr (ΣfiW), where Σfi is the

covariance matrix of fi and is expressed as

Σfi = diag (Ωfi) , (13)



where Ωfi = [Ω
(1)
fi

Ω
(2)
fi
. . .Ω

(M)
fi

]T .
The PDF in (9) is that of a difference between two indepen-

dent exponential random variables and can easily be shown to
have the following form

f(ψ) =

{
λ1λ2

λ1+λ2
exp (−λ1ψ) if ψ ≥ 0,

λ1λ2

λ1+λ2
exp (λ2ψ) if ψ < 0,

(14)

where λ1 = 1/(PpΩ
(i)
c ) and λ2 = 1/(γ

(i)
T tr (ΣfiW)).

Using (14) and utilising the fact that γ(i)
T σ2

p ≥ 0, (9) can be
rewritten as

Po
(i) = 1−

∫ ∞
γ
(i)
T σ2

p

λ1λ2

λ1 + λ2
exp (−λ1ψ) dψ

= 1− λ2

λ1 + λ2
exp

(
−λ1γ

(i)
T σ2

p

)
. (15)

Hence, the ith PU outage probability constraint can be
written as the following convex constraint

tr (ΣfiW) ≤
PpΩ

(i)
c

(
exp

(
− γ

(i)
T σ2

p

PpΩ
(i)
c

)
− 1 + α(i)

)
γ

(i)
T (1− α(i))

. (16)

An important observation in the above constraint is that
it is dependent only on the diagonal elements of W, i.e.,
dependent only on the beamformer transmit power. This is
a fairly intuitive result since phase information of the SU-Tx
to PU-Rx links are not available and, therefore, power control
is the only degree of freedom available to the beamformer to
control the amount of interference to the PU-Rxs.

In (10), |hHw|2 is recognised to be a non-central Chi-
square random variable whose CDF is given by the generalised
Marcum’s Q function [23]. The generalised Marcum’s Q
function is difficult to handle and so to obtain a mathematically
tractable solution, we rewrite (10) as follows

Po
SU = Pr {wH h̃h̃Hw + wH(h̃eH + eh̃H)w

+wHeeHw ≤ γs,minσ
2
s }

= Pr {2<{wH h̃eHw}︸ ︷︷ ︸
u

+ wHeeHw︸ ︷︷ ︸
v

≤ γs,minσ
2
s −wH h̃h̃Hw}. (17)

Since u in (17) is a linear combination of zero-mean
independent Gaussian random variables, it itself is a zero-mean
Gaussian random variable with variance σ2

u given by

σ2
u = 2E{wH h̃eHwwHeh̃Hw}

= 2wH h̃wHE{eeH}wh̃Hw

= 2 tr (h̃h̃HW) tr (ΣeW)

= 2 tr (h̃h̃HWΣeW)

= 2‖(Σeh̃h̃H)
1
2 W‖2, (18)

where W = wwH . Using Lemma 1, v in (17) is recognised as
an exponentially distributed random variable with mean µv =
tr (ΣeW) and variance σ2

v = tr (ΣeW)
2.

When channel uncertainty is large, beamforming loses its
effectiveness since the beam width has to be widened to handle

the channel uncertainty. In this paper we focus on the scenario
where the channel uncertainty is in the acceptable range for
beamforming to be practical. In this scenario, σ2

v is much
smaller than σ2

u and as a result the PDF in (17) is dominated
by the Gaussian random variable v. Therefore, the PDF in (17)
can be approximated by the zero-mean Gaussian distribution
with variance σ2

u. Fig. 2 compares the true distribution with
its Gaussian approximation for two values of channel error
variance. Channel error is modelled as e ∼ NC(0, σ2

eI), i.e.,
Σe = σ2

eI.
The SU outage probability can therefore be approximated

as

Po
SU ≈ 1− 1

2
erfc

(
γs,minσ

2
s − tr (h̃h̃HW)

2‖(Σeh̃h̃H)
1
2 W‖

)
, (19)

and the SU outage probability constraint can be expressed as
the convex constraint

γs,minσ
2
s − tr (h̃h̃HW)

erfc−1 (2(1− β))
≥ 2‖(Σeh̃h̃H)

1
2 W‖. (20)

The robust transmit power minimisation problem can there-
fore be stated as the following semidefinite program (SDP)
[24]

min
W

tr (W) (21a)

s.t. (16), i = 1 . . .K (21b)
(20) (21c)
W � 0 (21d)
rank(W) = 1 (21e)

Constraints (21d) and (21e) are included in the above op-
timisation problem because of the definition of W. Note
that constraint (21e) is a non-convex constraint hence, we
apply the idea of semidefinite relaxation (SDR) [24, 25] and
relax problem (21) by dropping the non-convex rank-one
constraint and obtain the following convex robust transmit
power minimisation SDP

min
W

tr (W) (22a)

s.t. (16), i = 1 . . .K (22b)
(20) (22c)
W � 0 (22d)

Problem (22) is in a convex form and standard interior point
methods can be used to solve it efficiently.

After solving (22) one needs to recover the optimum beam-
forming vector, w∗, from W. In [26] it was shown that, in
beamforming problems of this nature, the solution obtained
is always rank-one and, therefore, w∗ can be chosen to be
the principle eigenvector of W. In our extensive numerical
simulations we have never obtained a solution that had a rank
higher than one.
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V. SIMULATION RESULTS AND DISCUSSION

We illustrate the performance of our proposed methods
through numerical simulations in i.i.d. Rayleigh flat-fading
channels. We consider a system with four PUs and one SU
with four transmit antennas, i.e., K = 4 and M = 4. In
all simulations we have set Pp = 30 dBm, γ(i)

T = 10dB,
γs,min = 10 dB and the noise power at each PU and SU
receiver is assumed to be −5 dBm, i.e., σ2

p = σ2
s = −5

dBm. The maximum PU outage probability, α(i), is set to
20%. Similarly, the maximum SU outage probability, β is
also set to 20%. Channel powers in all links are set to 0

dB, i.e., Ω
(i)
c = 0dB, Ω

(j)
fi

= 0dB and Ω
(j)
h = 0dB. The SU

channel error is modelled as e ∼ NC(0, σ2
eI), i.e, Σe = σ2

eI.
The error variance, σ2

e , is referenced from the mean SU
channel power and simulations are performed for two values
of σ2

e , specifically, −10dB and −5dB. Results of our proposed
method are compared against the full CSI, worst case and non-
robust designs.

The worst case beamformer is designed such that the
SINR at the ith PU-Rx is above the threshold γ

(i)
T and

the SNR at the SU-Rx is above the threshold γs,min for
every possible realisation of ci, fi and e. Since instantaneous
realisations of ci and fi are not available, our worst case
design solves problem (6) based on the expected value of (5).
Note that (5) is at its minimum when |ci|2 = Ω

(i)
c − εc and

|f (j)
i |2 = Ω

(j)
fi

+ εf , for some appropriately chosen values of
εc, εf ≥ 0. The worst case beamformer ensures this minimum
value is always above the threshold γ

(i)
T . Furthermore, we

impose a norm bound [27] on e, i.e., ‖e‖ ≤ εe and the
worst case beamformer ensures that the SNR at the SU-Rx
is above the threshold γs,min for every possible realisation of
e within this bound. To provide a fair comparison with the
method proposed in this paper, εc, εf and εe are chosen such
that Pr {|ci|2 ≥ Ω

(i)
c − εc}

∏R
j=1 Pr {|f (j)

i |2 ≤ Ω
(j)
fi

+ εf} =

1− α(i), ∀i and Pr {‖e‖ ≤ εe} = 1− β.

In Fig. 3, results are provided for the CDF of the SINR
at the first PU (PU 1). We see that the required probability
of the resulting PU-Rx SINR being below 10 dB is satisfied
by the robust optimisation scheme proposed in this paper for
both error variance values. The other methods also achieve
the required performance. The full CSI design achieves the
best performance, while the worst case design results in the
worst performance. This is because the PU and SU systems
have conflicting requirements and, as the performance of the
SU in terms of achieved SNR increases, it comes at a loss of
performance of the PU.

The SU-Rx SNR and the SU-Tx transmit power CDFs for
the proposed method along with the full CSI, non-robust and
the worst case designs are shown in Figs. 4 and 5, respectively.
We see that the probability of outage for the full CSI design
is zero and it achieves this by utilising the least amount
of transmit power. The full CSI design performance serves
as a benchmark for the other methods. The proposed robust
beamformer satisfies the outage probability constraint for both
error variance values. We observe that as the channel error
power increases the SNR curves move away from the ideal
step function response of the full CSI case. We also see that
the proposed beamformer utilises more transmit power than
the full CSI design and the power consumption increases
as the channel error variance increases. This is because the
robust beamformer has to deal with more uncertainty in the
channel and, in doing so, consumes more transmit power.
The probability that the SNR is below 10 dB in the worst
case approach is almost zero. The worst case design SNR
curve is the furthest away from the ideal scenario and this
design also consumes the largest amount of transmit power.
This is because the beamformer is optimised to protect the
PU-Rx on every possible CSI realisation in the chosen set.
Although the non-robust method utilises the same amount
of power as the full CSI design, the outage probability is
almost 50% because the outage probability constraint is not
respected. To summarise, our results reveal that the statistically
robust beamformer proposed in this paper provides the best
performance when channel uncertainties exist.

VI. CONCLUSIONS

In this paper, we have studied a statistically robust beam-
former for a CR network under the assumption of partial and
imperfect CSI. We have shown that the robust SU transmit
power minimisation problem can be formulated as a convex
optimisation problem using probabilistic constraints. Our re-
sults reveal that the robust beamformer proposed in this paper
provides the best performance when channel uncertainties
exist.
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